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a b s t r a c t

The conjugate gradient (CG)method is one of themost popularmethods for solving smooth
unconstrained optimization problems due to its simplicity and low memory requirement.
However, the usage of CG methods is mainly restricted to solving smooth optimization
problems so far. The purpose of this paper is to present efficient conjugate gradient-
type methods to solve nonsmooth optimization problems. By using the Moreau–Yosida
regulation (smoothing) approach and a nonmonotone line search technique, we propose a
modified Polak–Ribière–Polyak (PRP) CG algorithm for solving a nonsmooth unconstrained
convex minimization problem. Our algorithm possesses the following three desired
properties. (i) The search direction satisfies the sufficient descent property and belongs to
a trust region automatically; (ii) the search direction makes use of not only the gradient
information but also the function value information; and (iii) the algorithm inherits an
important property of the well-known PRP method: the tendency to turn towards the
steepest descent direction if a small step is generated away from the solution, preventing
a sequence of tiny steps from happening. Under standard conditions, we show that the
algorithm converges globally to an optimal solution. Numerical experiment shows that our
algorithm is effective and suitable for solving large-scale nonsmooth unconstrained convex
optimization problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following unconstrained convex optimization problem:

(P) min
x∈ℜn

f (x), (1.1)

where f : ℜ
n

→ ℜ is a possibly nonsmooth convex function. In the special case when f is continuously differentiable, this
optimization problem has been well studied for several decades. In particular, the conjugate gradient (CG) method and the
quasi-Newton method are two major popular methods for solving smooth unconstrained convex optimization problems.
The quasi-Newton method involves the computation/approximation of the Hessian matrix of the objective function and
often has fast convergence. On the other hand, the conjugate gradient method only uses the first order information and so is
suitable for solving large-scale optimization problems. At present, there are many well-known conjugate gradient formulae
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(for example, see [1–10]). In particular, the so-called Polak–Ribière–Polyak (PRP) conjugate gradient method has been well
studied and is generally believed to be one of themost efficient conjugate gradientmethods. However, the usage of conjugate
gradient methods is mainly restricted to solving smooth optimization problems so far.

Recently, manymodern applications of optimization have called for the need of studying the large-scale nonsmooth con-
vex optimizationproblem.As an illustrating example, let us consider the image restorationproblemarising in imageprocess-
ing. The image restoration problem is to reconstruct an image of an unknown scene from an observed image. This problem
plays an important role in medical sciences, biological engineering and other areas of science and engineering [11–13]. The
most common image degradation model can be represented by the following system:

b = Ax + η

where η ∈ Rm represents the noise, A is an m × n blurring matrix, x ∈ Rn and b ∈ Rm are the underlying and observed
images respectively. As η is typically unknown, one way to solve it is to solve the least square optimization problem
minx∈Rn ∥Ax + b∥2. Solving this problem alone will not get a satisfactory solution since the system is very sensitive to the
noise and lack of information. To overcome this, the following regularized least square problem is often used:

min
x∈Rn

∥Ax + b∥2
+ λ∥Dx∥1

where D is a linear operator, λ is the regularization parameter that controls the trade-off between the data-fitting term and
the regularization term and ∥ · ∥1 is the l1 norm. As the l1 norm is nonsmooth, the above problem is a nonsmooth convex
optimization problem and is typically of large scale.

The purpose of this paper is to present efficient conjugate gradient-type methods to solve the nonsmooth optimization
problem (P). By using the Moreau–Yosida regulation (smoothing) approach and a nonmonotone line search technique, we
propose amodified PRP conjugate gradient algorithm for solving a nonsmooth unconstrained convexminimization problem.
Our algorithm possesses the following three desired properties. (i) The search direction satisfies the sufficiently descent
property and belongs to a trust region automatically; (ii) the search directionmakes use of not only the gradient information
but also the function information; and (iii) the algorithm inherits an important property of the well-known PRP method:
the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, preventing
a sequence of tiny steps from happening.

This paper is organized as follows. In Section 2, we briefly review some basic results in convex analysis and nonsmooth
analysis. In Section 3, we present our new modified PRP conjugate gradient algorithm. In Section 4, we prove the global
convergence of the proposed method. In Section 5, we discuss some similar extensions and provide another three modified
conjugate gradient formulae. In Section 6, we report numerical results for our algorithm and present some comparison for
the existing methods for both small-scale and large-scale nonsmooth convex optimization problems. Finally, we conclude
our paper andmention some of the possible future research topics in Section 7. Throughout this paper, without specification,
∥ · ∥ denotes the Euclidean norm of vectors or matrices.

2. Elements of convex analysis and nonsmooth analysis

In this section, we review some basic facts and results in convex analysis and nonsmooth analysis. Let f : ℜ
n

→ ℜ be a
convex (possibly nonsmooth) function. Let F : ℜ

n
→ ℜ be the so-called Moreau–Yosida regularization of f defined by

F(x) = min
z∈ℜn


f (z) +

1
2λ

∥z − x∥2


, (2.1)

where λ is a positive parameter and ∥ · ∥ denotes the Euclidean norm. Let

θ(z, x) = f (z) +
1
2λ

∥z − x∥2

and denote p(x) = argminzθ(z, x). Then, p(x) is well-defined and unique, since θ(·, x) is strongly convex for each fixed x.
By (2.1), F can be expressed by

F(x) = f (p(x)) +
1
2λ

∥p(x) − x∥2.

In what follows, we denote the gradient of F by g . Some important and useful properties of the Moreau–Yosida
regularization function F are given as follows.

(i) The function F is finite-valued, convex, and everywhere differentiable with

g(x) = ∇F(x) =
x − p(x)

λ
. (2.2)

Moreover, the gradient mapping g : ℜ
n

→ ℜ
n is globally Lipschitz continuous with modulus λ, i.e.,

∥g(x) − g(y)∥ ≤
1
λ

∥x − y∥, ∀ x, y ∈ ℜ
n. (2.3)

(ii) x solves minx∈Rn f (x) if and only if ∇F(x) = 0, namely, p(x) = x.
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It is obvious that F(x) and g(x) can be obtained through the optimal solution of argminz∈ℜnθ(z). However, p(x), the
minimizer of θ(z), is difficult or even impossible to solve exactly. Thus, in the real computation, instead of calculating the
exact value of p(x), F(x) and g(x), we often use some appropriate approximation. Indeed, for each x ∈ ℜ

n and any ε > 0,
there exists a vector pα(x, ε) ∈ ℜ

n such that

f (pα(x, ε)) +
1
2λ

∥pα(x, ε) − x∥2
≤ F(x) + ε. (2.4)

Thus, when ε is small, we can use pα(x, ε) to define approximations of F(x) and g(x) as follows:

Fα(x, ε) = f (pα(x, ε)) +
1
2λ

∥pα(x, ε) − x∥2 (2.5)

and

gα(x, ε) =
x − pα(x, ε)

λ
, (2.6)

respectively. Some implementable algorithms for computing pα(x, ε) for a nondifferentiable convex function can be found
in [14]. A remarkable feature of Fα(x, ε) and gα(x, ε) is given as follows [15].

Proposition 2.1. Let pα(x, ε) be a vector satisfying (2.4), and Fα(x, ε) and gα(x, ε) are defined by (2.5) and (2.6), respectively.
Then we get

F(x) ≤ Fα(x, ε) ≤ F(x) + ε, (2.7)

∥pα(x, ε) − p(x)∥ ≤
√
2λε, (2.8)

and

∥gα(x, ε) − g(x)∥ ≤

2ε/λ. (2.9)

The above proposition illustrates that we can compute approximations Fα(x, ε) and gα(x, ε). By choosing the parameter
ε small enough, Fα(x, ε) and gα(x, ε) may be made arbitrarily close to F(x) and g(x).

Based on these features,many algorithmshave beenproposed for solving problem (P) (for example, see [16]). The classical
proximal point algorithm [17] can be regarded as a gradient-type method for solving problem (P) and has been proved to
be effective in dealing with the difficulty of evaluating the function value of F(x) and its gradient ∇F(x) at a given point
x (see [18–22]). Lemaréchal [23] and Wolfe [24] initiated a giant stride forward in nonsmooth optimization by the bundle
concept, which can handle convex and nonconvex f . Moreover, Kiwiel [25] proposed a bundle variant, which is close to
the bundle trust iteration method (see [26]). Recently, Haarala et al. proposed a new limited memory bundle method for
large-scale nonsmooth optimization problems [27]. For other references of bundle methods, one may refer to [28–30].

3. Modified PRP method for nonsmooth problem

In this section, we introduce our modified PRP conjugate gradient methods for solving the nonsmooth convex
unconstrained optimization problem minx∈Rn f (x) where f is a convex function. Our basic idea is to make use of the
Moreau–Yosida regularization for smoothing the function and also the two recently introduced acceleration techniques
in modifying the CG methods. To do this, we first introduce the two acceleration techniques for modifying the CG methods
in solving a smooth optimization problem.

3.1. Modified CG method by enforcing the sufficient descent condition

Recall that, when f is smooth, the search direction of the famous PRP conjugate gradient methods is given by

dk+1 =


−∇fk+1 + βPRP

k dk, if k ≥ 1,
−∇fk+1, if k = 0, (3.1)

where ∇fk = ∇f (xk) and βPRP
k =

∇f Tk+1yk
∥∇fk∥2

and yk = ∇fk+1 − ∇fk. In general, the PRP method may not globally converge as it
does not satisfy the following so-called sufficient condition: there exists r > 0 such that

∇f Tk dk ≤ −r∥∇fk∥2 for all k ∈ N.

Note that the sufficiently descent condition usually plays an important role in the global convergent analysis of the conjugate
gradientmethods and so,many authors hinted that the sufficiently descent conditionmaybe crucial for CGmethods [31–34].
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In order to ensure that the search direction has this property,manymodified CGmethods are presented ([35–41] etc.), where
Zhang et al. [41] presented a three-term PRP method where the search direction is defined by

dk+1 =


−∇fk+1 + βPRP

k dk − ϑkyk, if k ≥ 1
−∇fk+1, if k = 0, (3.2)

where ϑk =
∇f Tk+1dk
∥∇fk∥2

, vk+1 = vk + µkdk, andµk is the stepsize. It can be verified that dTk∇fk = −∥∇fk∥2 for all k. This method
reduces to the standard PRP method if exact line search is used; its global convergence with Armijo-type line search is
obtained in [41].

3.2. Modified CG method by incorporating the function value information

Before we proceed to our modified PRP algorithm, let us introduce the second accelerating technique in modifying the
conjugate gradientmethodwhichwas used by the authors in [42]. Recall that another effectivemethod for solving a smooth
optimization problem is the quasi-Newton secant method where the iterate xk satisfy xk+1 = xk − B−1

k ∇fk, where Bk is an
approximation Hessian of f at xk. The sequence of matrix {Bk} satisfies the following secant equation:

Bk+1sk = yk, (3.3)

where sk = xk+1 − xk. Obviously, only the gradient information is exploited in (3.3), while function values available are
neglected. Hence, techniques using gradient values as well as function values have been studied by several authors. A
significant attempt that modified the usual secant equation by using both function values and gradient values is due to
Wei et al. (see [43]), where the secant equation is defined by

Bk+1sk = y∗

k , (3.4)

where y∗

k = yk + γ ∗

k sk and γ ∗

k =
(∇f (xk+1)+∇f (xk))T sk+2(f (xk)−f (xk+1))

∥sk∥2
. A remarkable property of this secant equation (3.4) is

that, if f is twice continuously differentiable and Bk+1 is updated by the BFGS method formula, then the following equality

f (xk) = f (xk+1) + ∇f (xk+1)
T sk +

1
2
sTkBk+1sk (3.5)

holds for all k. Moreover, this property is independent of any convexity assumption on the objective function. The theoretical
advantage of the new quasi-Newton equation (3.4) can be seen from the following theorem.

Theorem 3.1 ([43]). Assume that the function f is sufficiently smooth and ∥sk∥ is sufficiently small, then we have

sTk∇
2fk+1sk − sTky

∗

k −
1
3
sTk (Tk+1sk)sk = O(∥sk∥4) (3.6)

and

sTk∇
2fk+1sk − sTkyk −

1
2
sTk (Tk+1sk)sk = O(∥sk∥4) (3.7)

where ∇
2fk+1 denotes the Hessian matrix of f at xk+1, Tk+1 is the tensor of f at xk+1, and

sTk (Tk+1sk)sk =

n
i,j,l=1

∂3f (xk+1)

∂xi∂xj∂xl
siks

j
ks

l
k.

The above result shows that the new quasi-Newton equation (3.4) has better approximate relation than that of (3.3).
Based on this new quasi-Newton equation, various efficient new conjugate gradient methods were proposed and had led to
numerical improvement by replacing yk with y∗

k (see [44–47] etc.).
Motivated by the three-term PRP formula (3.2) and the new quasi-Newton equation (3.4), we now present a modified

three-term PRP method for solving a nonsmooth optimization problem.

3.3. New PRP-method for a nonsmooth convex program

Recall that gα(xk, εk) is an approximation of the gradient of F (theMoreau–Yosida regularization of the objective function
f ) at xk. By replacing ∇fk and yk with gα(xk, εk) and y∗

k respectively in the three-term PRP formula (3.2), we now propose a
modified PRP conjugate gradient formula for solving (P) as follows:

dk+1 =

−gα(xk+1, εk+1) +
gα(xk+1, εk+1)

Ty∗

kdk − dTkg
α(xk+1, εk+1)y∗

k

max{2c∥dk∥ ∥y∗

k∥, ∥gα(xk, εk)∥2}
, if k ≥ 1

−gα(xk+1, εk+1), if k = 0,
(3.8)
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where y∗

k = yk + γ ∗

k sk, yk = gα(xk+1, εk+1) − gα(xk, εk), sk = xk+1 − xk, dk is the search direction at the kth, c > 0 is a
constant, and

γ ∗

k =
(gα(xk+1, εk+1) + gα(xk, εk))T sk + 2(Fα(xk, εk) − Fα(xk+1, εk+1))

∥sk∥2
.

It is worth noting that the scaling term ∥∇f (xk)∥2 in the denominator of the three-term PRP formula (3.2) is adjusted to
max{2c∥dk∥ ∥y∗

k∥, ∥g
α(xk, εk)∥2

} in our new PRP conjugate gradient formula. This modification will help us to show that all
the search direction will stay in a trust region automatically (see Lemma 3.1).

The algorithm of the modified PRP conjugate gradient method is stated as follows.

Algorithm 1. Nonmonotone Conjugate Gradient Algorithm.
Step 0. Choose x0 ∈ ℜ

n, ϵ0 ∈ (0, 1), σ ∈ (0, 1), c > 0, s > 0, λ > 0, ρ ∈ [0, 1], E0 = 1, J0 = Fα(x0, ε0), d0 = −gα(x0, ε0)
and ϵ ∈ (0, 1). Let k = 0.

Step 1. If xk satisfies the termination condition ∥gα(xk, εk)∥ < ϵ, then stop. Otherwise, go to Step 2.
Step 2. Choose a scalar εk+1 satisfying 0 < εk+1 < εk, and compute the step size αk by the following nonmonotone Armijo-

type line search:

Fα(xk + αkdk, εk+1) − Jk ≤ σαkgα(xk, εk)Tdk, (3.9)

where αk = s 2−ik , ik ∈ {0, 1, 2, . . .}.
Step 3. Let xk+1 = xk + αkdk. If ∥gα(xk+1, εk+1)∥ < ϵ, then stop. Otherwise, go to Step 4.
Step 4. Update Jk by the following formula:

Ek+1 = ρEk + 1, Jk+1 =
ρEkJk + Fα(xk + αkdk, εk+1)

Ek+1
. (3.10)

Step 5. Compute the search direction dk+1 by (3.8).
Step 6. Let k := k + 1, and go back to Step 1.

Remark i. The line search technique (3.9) is motivated by Zhang and Hager [48]. It is not difficult to see that Jk+1 is a convex
combination of Jk and Fα(xk+1, εk+1). Noticing J0 = Fα(x0, ε0), it follows that Jk is a convex combination of the function
values Fα(x0, ε0), Fα(x1, ε1), . . . , Fα(xk, εk). The choice of ρ controls the degree of nonmonotonicity. If ρ = 0, then the line
search is the usual monotone Armijo line search. If ρ = 1, then Jk = Ck, where

Ck =
1

k + 1

k
i=0

Fα(xi, εi)

is the average function value.

The following lemma shows that our CG method satisfies the sufficiently descent property and the corresponding CG
searching direction dk belongs to a trust region automatically.

Lemma 3.1 (Sufficient Descent Property). For all k ∈ N ∪ {0}, we have

gα(xk, εk)Tdk = −∥gα(xk, εk)∥2 (3.11)

and

∥dk∥ ≤


1 +

1
c


∥gα(xk, εk)∥. (3.12)

Proof. For k = 0, we have d0 = −gα(x0, ε0). So, (3.11) and (3.12) obviously hold. For k ≥ 1, by the definition of dk, we get

dTk+1g
α(xk+1, εk+1) = −∥gα(xk+1, εk+1)∥

2
+


gα(xk+1, εk+1)

Ty∗

kdk − dTkg
α(xk+1, εk+1)y∗

k

max{2c∥dk∥ ∥y∗

k∥, ∥gα(xk, εk)∥2}

T
gα(xk+1, εk+1)

= −∥gα(xk+1, εk+1)∥
2. (3.13)

So (3.11) holds. Now we show (3.12). Using the definition of dk again, we have

∥dk+1∥ =

−gα(xk+1, εk+1) +
gα(xk+1, εk+1)

Ty∗

kdk − dTkg
α(xk+1, εk+1)y∗

k

max{2∥dk∥ ∥y∗

k∥, ∥gα(xk, εk)∥2}


≤ ∥gα(xk+1, εk+1)∥ +

∥gα(xk+1, εk+1)∥ ∥y∗

k∥ ∥dk∥ + ∥dk∥ ∥gα(xk+1, εk+1)∥ ∥y∗

k∥

max{2c∥dk∥ ∥y∗

k∥, ∥gα(xk, εk)∥2}

≤


1 +

1
c


∥gα(xk+1, εk+1)∥,
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where the last inequality follows as

max{2c∥dk∥ ∥y∗

k∥, ∥g
α(xk, εk)∥2

} ≥ 2c∥dk∥ ∥y∗

k∥.

The proof is complete. �

4. Convergence analysis

In this section, we provide a global convergence analysis for our modified PRP algorithm. In order to get the global
convergence of Algorithm 1, the following assumption is made throughout this section.

Assumption A. (i) There exists a positive constantM such that

∥∇F(uk)∥ ≤ M, ∀ uk ∈ [xk, xk+1] and ∀ k ∈ N (4.1)

where F is the Moreau–Yosida regularization of f .
(ii) F is bounded from below.
(iii) The sequence εk converges to zero.

Remark ii. If sk → 0, it is not difficult to get ∥gα(xk+1, εk+1)∥ − ∥gα(xk, εk)∥ → 0 and Fα(xk+1, εk+1) − Fα(xk, εk) → 0.
Then, we see that

∥dk+1 − (−gα(xk+1, εk+1))∥ → 0.

This shows that the proposedmethod inherits the property of thewell-known PRP conjugate gradientmethod: the tendency
to turn towards the steepest descent direction if a small step is generated away from the solution, preventing a sequence of
tiny steps from happening.

Using Lemma 3.1 and Assumption A, similar to Lemma 1.1 in [48], we can show that Algorithm 1 is well-defined as in
the following lemma. As the proof is essentially the same as Lemma 1.1 in [48], we omit its proof here.

Lemma 4.1. Suppose that Assumption A holds. Then, for the iterates generated by Algorithm 1, we have Fα(xk, εk) ≤ Jk ≤ Ck for
each k, where Ck =

1
k+1

k
i=0 F

α(xi, εi). Moreover, there exists αk satisfying the Armijo conditions of the line search update.

Lemma 4.2. Suppose that Assumption A holds. Let {(xk, αk)} be the sequence generated by Algorithm 1. Suppose that εk =

o(α2
k∥dk∥

2) holds. Then, there exists a constant m0 > 0 such that

αk ≥ m0. (4.2)

Proof. Let αk satisfy the line search (3.9). We proceed by the method of contradiction and suppose that lim infk→∞ αk = 0.
By passing to a subsequence if necessary, we may assume that αk → 0. Then, by the line search, α′

k =
αk
2 satisfies

Fα(xk + α′

kdk, εk+1) − Jk > σα′

kg
α(xk, εk)Tdk.

Using Fα(xk, εk) ≤ Jk ≤ Ck in Lemma 4.1, we get

Fα(xk + α′

kdk, εk+1) − Fα(xk, εk) ≥ Fα(xk + α′

kdk, εk+1) − Jk > σα′

kg
α(xk, εk)Tdk. (4.3)

By (4.3), (2.7) and Taylor’s formula, we have

σα′

kg
α(xk, εk)Tdk < Fα(xk + α′

kdk, εk+1) − Fα(xk, εk)
≤ F(xk + α′

kdk) − F(xk) + εk+1

= α′

kd
T
kg(xk) +

1
2
(α′

k)
2dTk∇F(uk)dk + εk+1

≤ α′

kd
T
kg(xk) +

M
2

(α′

k)
2
∥dk∥2

+ εk+1, (4.4)

where uk = xk + ια′

kdk, ι ∈ (0, 1), and the last inequality follows from (4.1). It follows from (4.4) that

αk

2
= α′

k >


(gα(xk, εk) − g(xk))Tdk − (1 − σ)gα(xk, εk)Tdk − εk+1/(α

′

k)
2

∥dk∥2


2
M

≥


(1 − σ)∥gα(xk, εk)∥2

−
√
2εk/λ∥dk∥ − εk

∥dk∥2


2
M

=


(1 − σ)∥gα(xk, εk)∥2

∥dk∥2
− o(αk)/

√
λ − o(α2

k )


2
M
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≥


(1 − σ)
1 +

1
c

2 − o(αk)/
√

λ − o(α2
k )


2
M

, (4.5)

where the equality follows εk = o(α2
k∥dk∥

2), the second inequality follows from (2.9), (3.11) and εk+1 ≤ εk, and the last
inequality follows (3.12). Dividing both sides by αk and passing to limit, we see that

1
2

≥ lim
k→∞


2(1 − σ)
1 +

1
c

2
M


1
αk

= +∞.

This is impossible, and so, the conclusion follows. �

We are now ready to show the global convergence of Algorithm 1.

Theorem 4.1 (Global Convergence). Suppose that the conditions in Lemma 4.2 hold. Then, limk→∞ ∥g(xk)∥ = 0, and any
accumulation point of xk is an optimal solution of (1.1).

Proof. We first prove that

lim
k→∞

∥gα(xk, εk)∥ = 0. (4.6)

To see this, we proceed by themethod of contradiction and suppose that (4.6) fails. Without loss generality, wemay assume
that there exist constants ϵ0 > 0 and k0 > 0 satisfying

∥gα(xk, εk)∥ ≥ ϵ0, ∀ k > k0. (4.7)

Using (3.9), (3.11), (4.2), and (4.7), we get

Fα(xk+1, εk+1) − Jk ≤ σαkgα(xk, εk)Tdk = −σαk∥gα(xk, εk)∥2
≤ −σm0ϵ0, ∀ k > k0.

It follows from the definition of Jk+1 that

Jk+1 =
ρEkJk + Fα(xk + αkdk, εk+1)

Ek+1

≤
ρEkJk + Jk − σm0ϵ0

Ek+1

= Jk −
σm0ϵ0

Ek+1
. (4.8)

Since F is bounded from below, we see that Fα(x, ε) is bounded from below. This together with Fα(xk, εk) ≤ Jk for all k
implies that Jk is also bounded from below. By (4.8), we have

∞
k=k0

σm0ϵ0

Ek+1
< ∞. (4.9)

By the definition of Ek+1, we get Ek+1 ≤ k + 2. It follows that
∞

k=k0

σm0ϵ0

Ek+1
≥

∞
k=k0

σm0ϵ0

k + 2
= +∞.

This makes contradiction and so, (4.6) holds.
We now show the second assertion. Using (2.9), we first see that

∥gα(xk, εk) − g(xk)∥ ≤


2εk
λ

.

This together with Assumption A(iii) implies that

lim
k→∞

∥g(xk)∥ = 0. (4.10)

Let x∗ be an accumulation point of {xk}. Then, there exists a subsequence {xk}K satisfying

lim
k∈K , k→∞

xk = x∗. (4.11)

From the properties of F(x), we obtain g(xk) = (xk − p(xk))/λ. Thus, by (4.10) and (4.11), x∗
= p(x∗) holds. Therefore x∗ is

an optimal solution of (1.1). �
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Before we end this section, we remark that some conjugate gradient-type methods were proposed in [8,10,49] for
solving possible nonsmooth optimization problems very recently.2 One of the key features of our method which differs
from themethods proposed in [8,49] is that ourmethodmakes use of not only the gradient information but also the function
information.

5. More modified conjugate gradient methods

Similar to the new method (3.8) introduced in the previous section, we can employ the same idea and present various
other modified conjugate gradient methods for solving problem (P). They are listed as follows.

(i) The Hestenes–Stiefel (HS) conjugate gradient formula for a smooth unconstrained optimization problem (see [4]):

dk+1 =

−∇fk+1 +
∇f Tk+1yk
dTkyk

dk, if k ≥ 1,

−∇fk+1, if k = 0.

Using the similar idea as in the preceding section, one can propose the following modified HS conjugate gradient formula
for solving problem (P):

dk+1 =

−gα(xk+1, εk+1) +
gα(xk+1, εk+1)

Ty∗

kdk − dTkg
α(xk+1, εk+1)y∗

k

max{2c∥dk∥ ∥y∗

k∥, |d
T
ky

∗

k |}
, if k ≥ 1,

−gα(xk+1, εk+1), if k = 0.

(ii) The Liu–Storey (LS) conjugate gradient formula for a smooth unconstrained optimization problem (see [50]):

dk+1 =

−∇fk+1 +
∇f Tk+1yk
−dTk∇fk

dk, if k ≥ 1,

−∇fk+1, if k = 0.

Using the similar idea as in the preceding section, one can propose the following modified LS conjugate gradient formula
for solving problem (P):

dk+1 =

−gα(xk+1, εk+1) +
gα(xk+1, εk+1)

Ty∗

kdk − dTkg
α(xk+1, εk+1)y∗

k

max{2c∥dk∥ ∥y∗

k∥, |d
T
kgα(xk, εk)|}

, if k ≥ 1,

−gα(xk+1, εk+1), if k = 0.

(iii) The Dai–Yuan (DY) conjugate gradient formula for a smooth unconstrained optimization problem (see [1]):

dk+1 =

−∇fk+1 +
∥∇fk+1∥

2

dTkyk
dk, if k ≥ 1,

−∇fk+1, if k = 0.

Using the similar idea as in the preceding section, one can propose the following modified DY conjugate gradient formula
for solving problem (P):

dk+1 =

−gα(xk+1, εk+1) +
∥gα(xk+1, εk+1)∥

2dk − dTkg
α(xk+1, εk+1)y∗

k

max{2c∥dk∥ ∥gα(xk+1, εk+1)∥, |dTky
∗

k |}
, if k ≥ 1,

−gα(xk+1, εk+1), if k = 0.

Similar to Algorithm 1, it is not difficult to construct new algorithms and to obtain the global convergence of these
methods. For simplicity, we omit the details here.

6. Numerical results

In this section, we test our modified PRP algorithm (Algorithm 1) for both small-scale problems and also large-scale
problems.
Small-scale problems. We first test our algorithm for some small-scale problems and compare it with the proximal bundle
method in [51]. All the nonsmooth problems of Table 6.1 can be found in [52]. Table 6.1 contains problem dimensions and
optimum function values.

Here fops(x) is the optimization function value. The algorithm was implemented using Matlab 7.6, and all experiments
were run on a PCwith CPU Intel PentiumDual E7500 2.93 GHz, 2 GB of SDRAMmemory, andWindows XP operating system.
The parameters were chosen as s = λ = 1, ρ = 0.5, σ = 0.8, and εk = 1/(k + 2)2. We stopped the algorithm when the
condition ∥gα(x, ε)∥ ≤ 10−10 was satisfied. In order to show the performance of the given algorithm, we also list the results

2 We are grateful to one referee for kindly pointing these references to us.
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Table 6.1
Problem descriptions for small-scaled testing problems.

Nr. Problems Dim fops(x)

1 Rosenbrock 2 0
2 Crescent 2 0
3 CB2 2 1.9522245
4 CB3 2 2.0
5 DEM 2 −3
6 QL 2 7.20
7 LQ 2 −1.4142136
8 Mifflin 1 2 −1.0
9 Mifflin 2 2 −1.0

10 Rosen–Suzuki 4 −44
11 Shor 5 22.600162
12 Colville 5 −32.348679

Table 6.2
Test results.

Nr. Algorithm 1 PBL BT fops(x)
NI/NF/f (x) NI/NF/f (x) NI/NF/f (x)

1 46/48/7.091824 × 10−7 42/45/0.381 × 10−6 79/88/0.130 × 10−11 0
2 11/13/6.735123 × 10−5 18/20/0.679 × 10−6 24/27/ × 10−6 0
3 12/14/1.952225 32/34/1.9522245 13/16/1.952225 1.9522245
4 2/6/2.000098 14/16/2.0 13/21/2.0 2.0
5 4/6/−2.999866 17/19/−3.0 9/13/−3.0 −3
6 10/12/7.200011 13/15/7.2000015 12/17/7.200009 7.20
7 2/3/−1.414214 11/12/−1.4142136 10/11/−1.414214 −1.4142136
8 4/6/−0.9919815 66/68/−0.99999941 49/74/−1.0 −1.0
9 20/23/−0.9999925 13/15/−1.0 6/13/−1.0 −1.0

10 28/58/−43.99986 43/45/−43.999999 22/32/−43.99998 −44
11 33/91/22.60023 27/29/22.600162 29/30/−22.60016 22.600162
12 17/23/−32.34329 62/64/−32.348679 45/45/−32.3486 −32.348679

Table 6.3
Problem descriptions for large-scaled testing problems.

Nr. Problems x0

1 Generalization of MAXQ (1, 2, . . . , n/2, −(n/2 + 1), . . . ,−n)
2 Generalization of MXHILB (1, 1, . . .)
3 Chained LQ (−0.5, −0.5, . . .)
4 Number of active faces (1, 1, . . .)
5 Nonsmooth generalization of Brown function 2 (1, 0, . . .)
6 Chained Mifflin 2 (−1, −1, . . .)
7 Chained Crescent I (−1.5, 2, . . .)
8 Chained Crescent II (1, 0, . . .)

of paper [51] (proximal bundle method, PBL) and paper [26] (trust region concept, BT). The numerical results of PBL and BT
can be found in [51].

The columns of Table 6.2 have the following meanings.
Problem: the name of the test problem. NF: the number of the function evaluations.
NI: the total number of iterations. f (x): the function value at the final iteration.
fops(x): the optimization function evaluation.
From thenumerical results in Table 6.2, it can be seen that Algorithm1performsoverall the best among the threemethods

for the tested problem listed and the PBL method is competitive to the BT method.
Large-scale problems. As the conjugate gradient-typemethod is particularly useful for a large-scale problem, we also present
some numerical experiment for large-scale nonsmooth convex problems. In particular, as the recent successful limited
memory bundlemethod in [27] is proved to be one of themost efficientmethods for solving a large-scale nonsmooth convex
problem, we compare our algorithm with it. The following problems of Table 6.3 can be found in [27], where Problems 1–3
are convex function and others are nonconvex function. The numbers of variables usedwere 1000, 5000, 10000, and 50000.
The values of parameters were similar to those in the small-scale problems. The following experiments were implemented
in Fortran 90. In order to show the performance of Algorithm 1, we compared it with the method (LMBM) of paper [27]. The
stopping rule and parameters were set as in [27].

LMBM [27]. The new limited memory bundle method for large-scale nonsmooth optimization. The Fortran codes have
been contributed by Haarala, Miettinen, and Mäkelä, which are available at http://napsu.karmitsa.fi/lmbm/.

For these large-scale problems, the iteration number and the number of function evaluations of Algorithm 1 are com-
petitive to those of the LMBM method. Moreover, the number does not change obviously when the dimension increases.

http://napsu.karmitsa.fi/lmbm/
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Table 6.4
Test results.

Nr. Dim Algorithm 1 LMBM
NI/NF/f (x) NI/NF/f (x)

1 1000 225/4710/6.93540513648899 × 10−8 21492/22259/6.71025884158921 ×10−6

5000 250/5235/6.87979764297566 × 10−8 191470/196034/3.44987308783816 ×10−5

10000 261/5466/6.65278880046151 × 10−8 512415/523351/5.83498629004021 ×10−5

50000 286/5991/6.59944730089708 × 10−8 4999996/5 000000/5.77622918225693
×102

2 1000 91/1482/8.27377560377777 × 10−9 441/861/6.16640522014495 × 10−3

5000 111/1938/9.72057262375235 × 10−9 1258/2487/3.52143538240154 × 10−2

10000 120/2127/5.85235371545923 × 10−9 7027/7810/5.11605598924595 × 10−2

50000 141/2604/6.17794513724740 × 10−9 1036/1515/2.88716335417572

3 1000 37/114/7.26870782386942 × 10−9 300/1824/−1.41277614588146 × 105

5000 39/120/9.09316258227670 × 10−9 365/2198/−7.06961404239955 × 105

10000 40/123/9.09407298984668 × 10−9 376/2281/−1.41406858071499 × 106

50000 55/153/4.54740666059811 × 10−8 582/2998/−7.07092005296846 × 106

4 1000 77/1026/6.80373977063602 × 10−9 523/569/1.37667655053518 × 10−14

5000 90/1281/7.84048733972188 × 10−9 2585/2586/1.21306742421471 × 10−10

10000 96/1401/9.93659283247496 × 10−9 5069/5073/5.38381117320365 × 10−10

50000 110/1665/6.13431592528028 × 10−9 184/217/9.99980628711393 × 106

5 1000 38/117/7.26870855073998 × 10−9 467/3873/4.05785228342877 × 10−9

5000 40/123/9.09316349159170 × 10−9 453/4073/1.08041333809065 × 10−8

10000 41/125/1.81881459796775 × 10−8 736/7453/2.52215161529255 × 10−8

50000 55/153/9.09481332115074 × 10−8 1293/10995/7.26535476752977 ×10−7

6 1000 37/114/−2.49749999992731 × 104 1254/7355/−7.06476909407459 × 104

5000 39/120/−1.24974999999091 × 105 219/782/−3.53493693696815 × 105

10000 40/123/−2.49974999999091 × 105 267/743/−7.07042033377240 × 105

50000 43/132/−1.24997499999986 × 106 532/2220/−3.53546169719885 × 106

7 1000 37/114/5.48971001990139 × 10−9 138/560/2.46289254738352 × 10−4

5000 39/120/6.82939571561292 × 10−9 116/281/2.45751603804887 × 102

10000 40/123/6.82530298945494 × 10−9 188/267/2.00248216613019 × 10−5

50000 56/157/8.52753601066070 × 10−9 391/725/4.75680539402390 × 10−9

8 1000 39/120/6.81848177919164 × 10−9 763/7522/1.39417095132655 × 10−4

5000 41/126/8.52583070809487 × 10−9 943/8490/1.59176433435915 × 10−3

10000 42/129/8.52617176860804 × 10−9 1364/13919/1.06009303953474 ×10−2

50000 87/222/5.32902788563661 × 10−9 4657/61720/8.01042336673219 ×10−4

The final function value of the given algorithm is better than those of LMBM except for Problem 3. The performance of the
numerical results shows that Algorithm 1 can also be used to solve not only smooth convex optimization problems but also
nonconvex nonsmooth optimization problems. Taking everything together, the preliminary numerical results indicate that
the proposed method is efficient (see Table 6.4).

7. Conclusion

The CGmethod has the simplicity and the very lowmemory requirement and The PRPmethod is one of themost effective
conjugate gradient methods. By making use of the Moreau–Yosida regularization, a nonmonotone line search technique
of [48] and a new secant equation of [43] derived by the authors earlier, we present a modified PRP conjugate gradient
algorithm for solving nonsmooth convex optimization problems. Our method satisfies the sufficiently descent property
automatically, and the corresponding search direction belongs to a trust region. Another interesting feature of our method
is that it involves not only the gradient information but also the function information. Numerical results show that this
method is effective and is more competitive than the existing methods for both small-scale and large-scale nonsmooth
problems.

It would be interesting to see how our algorithm performs if we apply it to solve some optimization problem which
arises in the image processing area. It would also be interesting to compare the performance of ourmethodwith themethod
proposed in [8,10,49]. These will be our future research topics and will be examined in a forthcoming paper.
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